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Abstract. A study of the fractional Lagrangian of the so-called Caldirola-Kanai 
oscillator is presented. The fractional Euler-Lagrangian equations of the system have 
been obtained, and the obtained Euler-Lagrangian equations have been studied 
numerically. The numerical study is based on the so-called Grünwald-Letnikov 
approach, which is power series expansion of the generating function (backward and 
forward difference) and it can be easy derived from the Grünwald-Letnikov definition 
of the fractional derivative. This approach is based on the fact, that Riemman-Liouville 
fractional derivative is equivalent to the Grünwald-Letnikov derivative for a wide class 
of the functions. 
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1. INTRODUCTION 

Hamiltonian formulation plays an important role in classical and quantum 
mechanics [1, 2]. As an example the dissipative as well as the non-conservative 
systems can be constructed and treated using the Lagrangian and the Hamiltonian 
formulations [3]. Usually, dissipative systems are ascribed as having a microscopic 
nature [4–8]. Damped harmonic oscillator was investigated by Caldirola and Kanai 
[4–5]. The damped quantum harmonic oscillation with one or two degree of 
freedom in the framework of Caldirola-Kanai oscillator can be considered as one of 
the basic models of dissipation [8–9]. 
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When studying the damped quantum harmonic oscillator in the canonical 
approach, two different Hamiltonian representations have been introduced. In the 
first representation a one-dimensional system with an exponentially increasing 
mass was considered (i.e., the so-called the Caldirola-Kanai oscillator) [10–19]. On 
the other hand, the second representation the so-called Bateman Feshbach-
Tikochinsky oscillator, which consists of a damped and an amplified oscillator [12, 
16–19] is considered. The Caldirola-Kanai oscillator is an open system whose 
parameters such as mass and frequency are all time dependent, while the Bateman 
Feshbach-Tikochinsky oscillator is a closed system whose total energy is 
conserved and the dissipated energy from the damped oscillator is transferred to 
amplified one.  

Recently, fractional calculus has found many applications in many branches 
of science and engineering [20–22]. Fractional differential equations have been 
treated numerically and analytically in many papers [21–29]. Decomposition 
method is one of the methods used to solve such equations numerically and 
analytically [30–34]. Recently a new method called matrix approach has been 
introduced and used [35, 36]. On the other hand, analytic solutions to fractional-
order deferential equations are often expressed in terms of the Mittag-Leffler 
function [37–39].  

In this paper, we pay attention to study numerically the fractional Euler- 
Lagrange equation of the so-called Caldirola-Kanai oscillator. This work is 
organized as follows. In section 2 we discussed briefly the basic definitions of the 
fractional derivatives. In section 3 we presented our model. In section 4 numerical 
results of the obtained Euler-Lagrange equation of the model are depicted. Finally, 
the concluding remarks are illustrated. 

2. BASIC DEFINITIONS   

In this section some fundamental formulas of fractional calculus are 
presented. The first one is the left Riemann-Liouville fractional integral defined as 
follows [20, 21] 
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The form of the right Riemann-Liouville fractional integral  is 
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The expression of the left Riemann-Liouville fractional derivative reads  
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The right Riemann-Liouville fractional derivative is given by 
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Here α  is the order of the derivative such that 1n n− ≤ α ≤  and is different to 
zero. If α  is an integer, these derivatives become the classical ones. The 
generalized Mittag-Leffler function is defined as 
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such that 0α , and 0β . Thus, the exponential function is a special case for 
Mittag-Leffler function, namely 
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3.  THE MODEL   

We start our formalism by considering a harmonic oscillator whose mass 
depends on time such that ( ) exp( in )m t m s t= βγ , and described by the following 
Hamiltonian: 

 
2

2exp( sin ) exp(sin )
2 2
p mH t q t
m

= − βγ + βγ . (7) 

The mass depends explicitly on time, ,β γ  are variable parameter and damping 
factors, while ,p  and q are canonical conjugate. If exp( in )s tβγ  is Taylor expanded 
to first order in increasing power of tβγ  with 1β → . Then, Eq. (7) is reduces to 
Caldirola-Kanai Oscillator. 

The Lagrangian corresponding to the Hamiltonian given by Eq. (7) is given as: 

 2 21 1exp( in )[ 2 ( ) ]
2 2

L s t mq mw t q= βγ − .  (8) 

The classical equation of motion is that of a damped oscillator 

 2( ) os ( ) ( ) ( ) 0q t c tq t w t q t+ βγ βγ + = .  (9) 
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The fractional counterpart of Eq. (8) can be written as: 

 2 2 2
1,1

1 1( in )[ ( ) ( ) ]
2 2

F
a tL E s t m D q mw t qα= βγ − . (10) 

Using the general form for the fractional Euler-Lagrange equation, namely 
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the fractional Euler-Lagrange equations have the following form 

 2
1,1 1,1( ( in ) ( )) ( in ) ( ) ( ) 0t b a tD E s t D q t E s t w t q tα αβγ − βγ = . (12) 

Now, our goal is to solve Eq. (12) numerically for different values of α . 

4. NUMERICAL ANALYSIS 

For numerical solution of the linear fractional-order equations (12) we can 
use the decomposition to its canonical form with substitutions 1( ) ( )q t x t≡  and 

2( ) ( )a tD q t x tα ≡ . As a result, we obtain the set of equation in the following form: 
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Instead left and right side Riemann-Liouville fractional derivatives (3) and (4) in 
the set of equations (13) can be used the left and right Grünwald-Letnikov 
derivatives, which are equivalent to the Riemann-Liouville fractional derivatives 
for a wide class of the functions [40]. The Grünwald-Letnikov derivatives can be 
defined by using upper and lower triangular strip matrices (Podlubny’s matrix 
approach) or we can directly apply the formula derived from the Grünwald-
Letnikov definitions, backward and forward, respectively, for discrete time step kh, 
k = 1,2,3, … Le us consider the second approach, which works very well for linear 
as well as for nonlinear fractional differential equations [41]. Time interval [a, b] is 
discretized by (N + 1) equal grid points, where ( ) /N b a h= − . Thus, we obtain the 
following formula for discrete equivalents of left and right fractional derivatives: 
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respectively, where ( )k kx x t≈  and kt kh= . The binomial coefficients ic , i = 1,2,3,…, 
can be calculated according to relation 

 1
11i ic c

i −
+ = − 

 
α  (15) 

for 0 1c = . Then, general numerical solution of the fractional linear differential 
equation with left side derivative in the form 

 ( ) ( ( ), )a tD x t f x t tα =  (16) 

can be expressed for discrete time kt kh=  in the following form: 

 ( ) ( ( ), ) ( )
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k k k i k i
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−
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= − ∑ , (17) 

where m = 0 if we do not use a short memory principle, otherwise it can be related 
to memory length. Similarly we can derive a solution for an equation with right 
side fractional derivative. Let us consider the different value of order α for 
simulation time 1 second and time step h = 0.0005. The parameters set up are the 
following: β = 1, γ = 10, and initial condition q(0) = 0.1 and w(t) = 2t. 

  
Fig. 1 – Numerical solution of equation (18) for time 1 second. 

Let us consider the different function w(t) in the form w(t) = 4t +1 and 
parameters: β = 1, γ  = 10, and initial condition q(0) = 0.1. 
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Fig. 2 – Numerical solution of equation (18) for time 1 second. 

In Fig. 1 and Fig. 2 are depicted the simulation results of equations (17) for 
parameters β = 1, γ = 10, and various order α, where derivative interval is a = 0 
and b = 1, initial condition q(0) = 0.1, for total simulation time 1 second and 
computational time step h = 0.0005. 

5. CONCLUSIONS  

In this paper we investigated the numerical solutions of the fractional 
Caldirola-Kanai Euler-Lagrange equations. We started with the classical Caldirola-
Kanai Lagrangian and then we fractionalized it and we obtained the fractional 
Euler-Lagrange equations. Finally, we investigated numerically the solution of the 
fractional Euler-Lagrange equations obtained. Our numerical method used is based 
on the formula derived from the Grünwald-Letnikov definitions, backward and 
forward, respectively. The numerical results are shown in Fig. 1, and Fig. 2. For 
example, Fig. 1 shows the numerical solution of Eq. (17) for parameters β = 1,  
γ = 10, and various order α,  and initial condition q(0) = 0.1 and w(t) = 2t. While, 
Fig. 2 shows the numerical solution of Eq. (17) for parameters β = 1, γ = 10, and 
various order α,  initial condition q(0) = 0.1, and w(t) = 4t +1. 

It is clear from the figures that the behaviors of the fractional Euler-Lagrange 
equation strongly depend on the order of the fractional derivative, in addition to the 
form of the function w(t). For each graph we provided the classical solution of the 
equations (α = 1) and three different cases for α.  
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